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The Nonsense of Bitcoin in Portfolio Analysis
Haim Shalit

Department of Economics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; shalit@bgu.ac.il

Abstract: The paper demonstrates the nonsense of using Bitcoin in financial investments. By
using mean-variance financial analysis, stochastic dominance, CVaR, and the Shapley value
theory as analytical statistical models, I show how Bitcoin performs poorly by comparing it
against other traded assets. The conclusion is reached by analyzing daily freely available
market data for the period 2018–2023.
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1. Introduction
The purpose of this paper is to inquire why Bitcoin, despite it not being a valid medium

of exchange nor a reliable store of value, is considered a legitimate investment instrument
to be included in a portfolio of financial assets. Bitcoin proponents see it at par with other
financial instruments traded in organized and regulated markets. There are a large number
of well-respected research academicians who regard Bitcoin as a valid financial instrument
and would like to have it regulated. This is of course a blasphemy for Bitcoin purists who
claim that its main attraction is in its lack of regulation. Some professional analysts claim
that Bitcoin should be recognized as a valid medium of exchange in order to allow it to
legally register real-estate transactions. Renowned economists have been disparaged in the
media when they point out the nonsense of using Bitcoin both as an investment and as a
medium of exchange.

By reading some of the social networks, we observe that investors have not been
deterred by the large number of financial scandals and scams involved in Bitcoin and other
cryptocurrencies. It is not the purpose of the present paper to address this issue here. It is
remarkable that serious investors and important investment bankers have diverted effort,
money, and manpower to generate short-term revenues and invest into cryptocurrency
markets. I am not checking their profits and losses; so I may err by writing this paper.
However, I believe the remarks on Bitcoin written by Krugman (2022) in the New York
Times are well founded.

A well-known political analyst has assured me that terrorist organizations do not fund
their activities with Bitcoin, since blockchain records all transactions. Like other traffickers,
terrorists prefer the use of gold and fiat currency to facilitate their illicit transactions. How-
ever, following Foley et al. (2019), it appears that approximately one-quarter of Bitcoin users
are involved in illegal activity. From the intense literature on Bitcoin and cryptocurrency, I
cite a few papers that analyze Bitcoin in portfolios: Akhtaruzzaman et al. (2020) used Bitcoin
to build commodity portfolios, Bakry et al. (2021) investigated the performance of Bitcoin in
various portfolios, Eisl et al. (2015) analyzed Bitcoin in portfolios and used the conditional
value-at-risk metric to assess Bitcoin usefulness in diversification, and Platanakis and
Urquhart (2020) approved of the inclusion of Bitcoin in portfolios to benefit investors. An
important reference is Huberman et al. (2021), who analyzed the Bitcoin payment system,
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although I am convinced that most Bitcoin transactions are for the purpose of hoarding
value and not for the payment of goods and services.

In order to analyze the use of Bitcoin in financial investments, I consider three clas-
sical models that revolve around risk-averse investors defined as prefering to receive the
investment mean return and avoid participating in the investment.1 The first model is the
standard Markowitz (1952) portfolio theory conceived in the mean-variance space. The
second model, derived from von Neuman–Morgenstern expected utility theory, utilizes
second-degree stochastic dominance (SSD) to compare Bitcoin to other assets using an
absolute Lorenz curve and cumulative value-at-risk (CVaR). The third approach applies
the Shapley value from cooperative game theory to establish the most valuable investment
in building an efficient frontier portfolio with Bitcoin.

2. Bitcoin and Portfolio Management
In this section, I compare the ex-post performance of Bitcoin against the alternative

of holding a portfolio of the most valued shares traded on Wall Street. For the classic
Markowitz (1952) mean-variance (MV) paradigm, I used 108 shares that are all the com-
ponents of the S&P100 index from January 2018 to May 2023.2 Stock returns are daily
stock market data provided freely by Yahoo Finance. For Bitcoin, the quotes were also
downloaded from Yahoo Finance. The starting date for the analysis was dictated by the
introduction of Bitcoin futures on the Chicago Mercantile Exchange in December 2017.
Before the year 2018, it was difficult to short Bitcoin positions using derivative instruments.
Equity and bonds markets are closed on the weekends and holidays, leading to around
250 quotes per year. However, since Bitcoin is being traded 24/7, its quotes for weekends
and holidays are removed, amounting to a difference of 100 data points per year. This ma-
nipulation increases the volatility of Bitcoin and its mean return as the returns move from
Friday closing to Monday open. Indeed, the Bitcoin mean return including the weekend
data stands at 0.104% and its daily standard deviation at 3.77%, whereas the statistics for
Bitcoin for the same period (January 2018 to May 2023) for a 5-day week are 0.148% for
the mean return equals and 4.497% for its standard deviation.3 The 108 stocks statistics for
the period are provided in the Appendix A. With the sample at hand, we observe that the
Bitcoin daily return has the largest standard deviation but not the largest mean.

We developed the two-time period MV model with Bitcoin and 108 traded securities,
where investors minimize the portfolio variance subject to a mean return. We constructed
a portfolio frontier in the MV space with N risky assets whose returns r that are linearly
independent. This ensures the non-singularity of the variance-covariance matrix of asset
returns Σ . We also assume that at least two risky assets have different means. We denote
by µ the vector of asset mean returns and w as the vector of portfolio weights such that
∑N

i=1 wi = 1. We assume w ⋚ 0, hereby allowing for short sales. A frontier portfolio is
obtained by minimizing the variance portfolio 1

2 σ2
p = 1

2 w′Σw subject to a required mean
µp = w′µ and the portfolio constraint 1 = w′l, where l is an N-vector of ones. As shown by
Huang and Litzenberger (1988), the solution is obtained by minimizing the Lagrangian that
includes the two constraints and deriving the first-order conditions (FOCs) for a minimum,
with the second-order conditions being satisfied by the non-singularity of Σ.

For the ease of presentation, we define the quadratic forms: A = l′Σ−1µ, B = µ′Σ−1µ,
C = l′Σ−1l, and D = BC − A2. The scalars B and C are positive, since the matrix Σ is
positive-definite and so is its inverse. As shown by Huang and Litzenberger (1988), the
scalar D is also positive. From the FOCs for a minimum variance, the optimal portfolio
weights for a given mean µp are obtained as follows:

w∗
p =

1
D
[B · Σ−1l − A · Σ−1µ] +

1
D

[C · Σ−1µ − A · Σ−1l]µp. (1)
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The frontier portfolios delineate a hyperbola in the mean–standard deviation space leading
to the portfolio variance formula for a given µp :

σ2
p = w′

pΣwp =
C
D
(µp − A

C
)2 +

1
C

. (2)

Equation (2) is the basic formula for computing the frontier of optimal MV portfolios that
is drawn as a solid line in Figure 1. From the statistics shown in the Appendix A, we have
plotted the securities in Figure 1. First, we observe clearly that three stocks (AMD, NVDA,
TSLA) outperformed Bitcoin, having a smaller standard deviation and a higher mean return.
Furthermore, the efficient frontier constructed based on the 108 stocks clearly dominated
the performance statistics of Bitcoin (BTC) for the period 2018–2023. This concludes the
first examination based on the simple mean-variance model.

Figure 1. Efficient frontier, stocks, and Bitcoin.4

3. Bitcoin, the Lorenz, and CVaR
In this section5, the concepts of stochastic dominance are presented to demonstrate the

unreasonableness of using Bitcoin in financial analysis. For that purpose, I use the absolute
Lorenz curve as the main analytical tool to address second-degree stochastic dominance
(SSD) and cumulative value-at-risk (CVaR) to value risky assets. Stochastic dominance
theory developed by Hanoch and Levy (1969), Hadar and Russell (1969), and Rothschild
and Stiglitz (1970) provides economic efficiency under expected utility maximization with-
out specifying utility functions. This results in rules that compare cumulative probability
distributions (CDFs) of asset returns.
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Second-degree stochastic dominance (SSD), being mainly for risk-averse investors, is
the most common model used in portfolio selection. By comparing the areas under the
cumulative probabilities, SSD rules establish the necessary and sufficient conditions under
which risky assets are preferred by all risk-averse expected utility maximizers. Computing
the areas under the CDFs is not straightforward, as it must be done for all the probabilities.
Then, the analyst is required to compare between the various areas. One more evident
alternative was developed by Shorrocks (1983), who used the absolute Lorenz curve (named
here the Lorenz) to establish SSD rules. The Lorenz expresses the cumulative return on the
portfolio as a function of the cumulative probability distribution. Instead of comparing
conditional areas under the CDFs, the following SSD rules are easier to visualize: For all
risk-averse investors to prefer one asset over another, the Lorenz of one asset must lie
entirely above the Lorenz of the other. In other words, asset A is preferred to asset B by all
risk-averse investors if and only if

LA(p) ≥ LB(p) for 0 ≤ p ≤ 1, (3)

where L(p) is the Lorenz that, given the cumulative distribution F(x) for asset x, is
defined as

L(p) =

xp∫
−∞

x f (x)dx for − ∞ ≤ x < ∞; where xp is given by p =

xp∫
−∞

f (x)dx (4)

where f is the asset density function. Gastwirth (1971) proposed an elegant simplified
definition of the Lorenz curve by using the inverse of F(x) designated by F−1(t) = inf

x
{x :

F(x) ≥ t} which is written as

L(p) =

p∫
0

F−1(t)dt f or 0 ≤ t ≤ 1, (5)

where p is the cumulative probability at which the return xp is obtained. In a sense, xp is
the conditional mean return at cumulative probability p.

Let us explore the Lorenz drawn in Figure 2. Cumulative probabilities are shown on
the horizontal axis; thus, returns are ranked in increasing value. The vertical axis reflects
cumulative rates of returns weighted by the probabilities as formulated by Equation (3).
Starting at (0,0), the Lorenz accumulates the sorted returns multiplied by their probabilities.
Since the lowest returns can be losses, the Lorenz may result in negative values. The curve
ends at the mean return E(x) on the parallel vertical axis where all returns are used up and
multiplied by their probabilities.

As explained by Shalit (2014), “. . . the rationale for using the Lorenz in financial analysis
is rooted in the manner by which the Lorenz characterizes risk and mean return of invest-
ments for risk-averse investors. Such investors have concave utility functions that express
declining marginal utility. The horizontal axis in Figure 2 shows the probabilities of asset
returns ranked from those generating the lowest returns with the highest marginal utility to
those generating the highest returns with the lowest marginal utility. The ranking of asset
returns is the only information needed to sort an asset according to decreasing marginal
utility. This ordering is specified by the cumulative returns multiplied by the probabilities of
obtaining these returns. This is basically the Lorenz. The principle of distributing resources
according to decreasing marginal utility or decreasing marginal product ensures that finan-
cial resources are allocated optimally. Using the Lorenz to manage portfolio risk guarantees
that objective. Because the curve expresses asset behavior not as a function of returns over
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time but as the extent of having lower and higher returns, it provides much more relevant
information about risk and return than periodical charts. . . ”.

Figure 2. The Lorenz curve.6

We now compare the Lorenz of Bitcoin against the Lorenz curves of the other securities
to check whether it can be preferred by all risk-averse investors according to the stochastic
dominance rules. The Lorenz curves of the 108 shares and Bitcoin were computed for the
period 2018–2023. This is presented in Figure 3.

The results are convincing for the period at hand. Bitcoin was SSD-dominated by
most 108 securities. Although in general, Bitcoin revealed a higher mean return, its risk
as expressed by a series of larger negative returns produced a Lorenz that is well below
most of the other securities. It is true that the Lorenz curves intersect at some point, so
the the results are not overwhelming. Indeed, using the Lorenz to value SSD provides an
incomplete ranking of assets. Hence, one can look at the necessary conditions for stochastic
dominance that use the mean and Gini’s mean difference as statistics. Following Shalit and
Yitzhaki (2010), we obtain from the Lorenz the two statistics that express risk and expected
return. The latter is located at the terminal point of the Lorenz on the parallel vertical axis
at p = 1. The risk underlying the Lorenz is obtained by computing the vertical differences
between the Lorenz and a virtual riskless asset with the same expected return as the asset
labeled the line of safe asset (LSA). In Figure 2, the LSA is a straight line drawn from the
origin (0, 0) to the mean (µx, 1). The LSA expresses the expected return µx multiplied by
the probability p as plotted in Figure 2. The area between the LSA and the Lorenz is Gini’s
mean difference (GMD). In portfolio management, it is convenient to use one half of GMD
that we label here as the Gini:
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Figure 3. Lorenz curves of all assets for 2018–2023 daily returns.
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GMD/2 ≡ Γx = 2cov[x, F(x)] (6)

As seen in Figure 2 and explained above, the Gini is easily obtained by computing the area
between the LSA and the Lorenz as follows:

1
2

Γ =

1∫
0

[µx p − L(p)]dp = cov[x, F(x)]. (7)

Now, we can address the necessary conditions for SSD derived from the Lorenz. The mean
being the terminal point on the Lorenz is the first condition. A dominating asset should
have a greater expected return, as expressed by Equation (8) The second condition, as
expressed by Equation (9), looks at the area under the Lorenz that is the entire area below
the LSA and the area above the Lorenz, which is the Gini. The other necessary condition for
SSD is that the area below the Lorenz of the dominating asset be greater than the area below
the Lorenz of the dominated asset. This area is one-half the mean return subtracted by the
Gini. We can call this area the Gini adjusted mean return. These requirements explain the
necessary conditions for SSD first enunciated by Yitzhaki (1982) as the mean Gini (MG)
necessary conditions

µx ≥ µy (8)

µx − Γx ≥ µy − Γy (9)

for asset x to the SSD dominate asset y. To assert dominance, I use these conditions to rank
the shares and Bitcoin as they appear in Table 1. The ranking with respect to the mean and
the Gini-adjusted mean return show without any doubt the inferiority of Bitcoin according
to SSD rule expressed by Equation (9). Actually, to visualize the MG necessary conditions
for SSD, one shoud delineate the results of Table 1 in a mean vs Gini-adjusted mean return
space. Here, I use only condition (9). Although it has a larger mean, Bitcoin is mean Gini
dominated by all other assets.

Table 1. Bitcoin and stocks ranked according to Gini-adjusted mean return.

Symbol Mean Gini µ − Γ Symbol Mean Gini µ − Γ Symbol Mean Gini µ − Γ

PEP 0.05% 0.65% −0.60% ACN 0.07% 0.91% −0.84% CAT 0.06% 1.11% −1.05%
PG 0.05% 0.67% −0.61% MO 0.01% 0.85% −0.84% ADI 0.08% 1.14% −1.06%
KO 0.04% 0.66% −0.62% CB 0.04% 0.88% −0.84% AXP 0.07% 1.13% −1.06%
MDLZ 0.06% 0.68% −0.62% V 0.07% 0.92% −0.85% AVGO 0.13% 1.19% −1.07%
JNJ 0.03% 0.65% −0.62% SPGI 0.08% 0.93% −0.85% PNC 0.03% 1.10% −1.07%
MCD 0.06% 0.69% −0.63% TMO 0.09% 0.94% −0.85% USB 0.00% 1.08% −1.08%
WMT 0.05% 0.70% −0.65% CSCO 0.05% 0.91% −0.86% BAC 0.03% 1.11% −1.08%
CL 0.02% 0.68% −0.66% UNP 0.05% 0.92% −0.87% ISRG 0.09% 1.18% −1.08%
VZ 0.00% 0.65% −0.66% PLD 0.08% 0.95% −0.88% INTU 0.10% 1.22% −1.11%
MMC 0.07% 0.74% −0.67% AMT 0.05% 0.92% −0.88% AMZN 0.08% 1.20% −1.11%
MRK 0.08% 0.75% −0.67% SBUX 0.07% 0.95% −0.88% ADBE 0.09% 1.21% −1.12%
BRK-B 0.05% 0.72% −0.67% CCI 0.03% 0.91% −0.88% BKNG 0.06% 1.18% −1.12%
COST 0.09% 0.77% −0.68% CSX 0.06% 0.95% −0.89% FDX 0.02% 1.17% −1.14%
DUK 0.03% 0.73% −0.70% MSFT 0.12% 1.01% −0.89% CRM 0.08% 1.25% −1.17%
BMY 0.03% 0.78% −0.75% UPS 0.06% 0.95% −0.89% C 0.01% 1.18% −1.17%
LMT 0.05% 0.82% −0.77% SYK 0.07% 0.96% −0.90% WFC 0.01% 1.19% −1.18%
NEE 0.07% 0.84% −0.77% CVS 0.03% 0.93% −0.90% AIG 0.04% 1.24% −1.20%
BDX 0.03% 0.81% −0.78% CMCSA 0.02% 0.93% −0.91% INTC 0.01% 1.21% −1.20%
AMGN 0.04% 0.82% −0.78% MMM −0.03% 0.88% −0.91% SCHW 0.04% 1.24% −1.20%
LLY 0.15% 0.92% −0.78% KHC −0.01% 0.91% −0.92% TFC 0.01% 1.22% −1.21%
ABT 0.06% 0.86% −0.80% JPM 0.05% 0.99% −0.94% QCOM 0.09% 1.33% −1.24%
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Table 1. Cont.

Symbol Mean Gini µ − Γ Symbol Mean Gini µ − Γ Symbol Mean Gini µ − Γ

HON 0.04% 0.85% −0.80% RTX 0.04% 0.99% −0.95% META 0.07% 1.35% −1.28%
ADP 0.07% 0.87% −0.80% LOW 0.09% 1.04% −0.95% COP 0.10% 1.40% −1.31%
LIN 0.08% 0.89% −0.81% TGT 30.09% 1.03% −0.95% NOW 0.14% 1.46% −1.32%
CME 0.05% 0.86% −0.81% AAPL 0.13% 1.08% −0.95% GM 0.03% 1.37% −1.34%
MDT 0.03% 0.84% −0.81% MA 0.09% 1.04% −0.95% GE 0.04% 1.41% −1.37%
DHR 0.08% 0.90% −0.81% GOOGL 0.08% 1.05% −0.97% PYPL 0.03% 1.40% −1.37%
PFE 0.04% 0.85% −0.81% BLK 0.05% 1.03% −0.98% NFLX 0.10% 1.51% −1.41%
T 0.00% 0.81% −0.81% NKE 0.07% 1.05% −0.98% AMAT 0.12% 1.56% −1.44%
ORCL 0.08% 0.90% −0.81% GS 0.05% 1.04% −1.00% BA 0.03% 1.52% −1.49%
IBM 0.03% 0.84% −0.82% TXN 0.07% 1.07% −1.00% MU 0.08% 1.63% −1.54%
PM 0.03% 0.85% −0.82% CVX 0.06%w 1.06% −1.01% NVDA 0.21% 1.77% −1.56%
ZTS 0.08% 0.90% −0.82% DIS 0.01% 1.03% −1.02% AMD 0.24% 1.90% −1.66%
ABBV 0.06% 0.89% −0.83% CI 0.04% 1.07% −1.03% TSLA 0.26% 2.16% −1.91%
HD 0.06% 0.89% −0.83% DE 0.09% 1.12% −1.03% BTC 0.15% 2.30% −2.16%
UNH 0.08% 0.91% −0.83% MS 0.07% 1.12% −1.04%
TMUS 0.07% 0.91% −0.84% XOM 0.06% 1.11% −1.05%

The mean return minus the Gini expresses the necessary condition of Equation (9) for second-degree stochastic
dominance. The ranking shows what assets are most preferred by risk-averse investors.

Related to the Lorenz, there is an additional criterion that we like to use that is the
value-at-risk (VaR). The measure quantifies exposure to risk as the amount needed to keep
in a safe asset to overcome the default. VaR is a safety-first risk measure defined as the
negative quantile of probability p expressed as

VaR(p) = −F−1(p) (10)

As we can observe from Equation (10), VaR(p) is only one point on the Lorenz obtained
directly from the cumulative distribution function. However, it is well established that VaR
lacks the basic properties of a valid risk measure, as explained by Artzner et al. (1999). For
coping with VaR‘s lack of coherence, the conditional value-at-risk (CVaR) was developed by
Rockafellar and Uryasev (2000). The basic idea is to calculate CVaR(p) as the mean value
of all the quantiles below the original VaR in the lower tail of the cumulative distribution
function. This can basically be obtained directly from the Lorenz:

CVaR(p) = − 1
p

p∫
0

F−1(t)dt = − L(p)
p

(11)

In Figure 2, the CVaR(α) for probability α is the slope of the straight line that runs from (0,0)
to (α, L(α)). Under these circumstances, the estimated CVaR becomes a specific value of
the Lorenz. Hence, for a given data set, the CVaR is estimated by ranking and summing up
the observations. The CVaR at 5% and at 10% for our securities and Bitcoin are presented
in Table 2.

The larger CVaR, the riskier the stock. From Table 2, we see that BTC ranks among the
riskier ones. No surprise here. This is particularly true for the stocks NVDA, AMD, and
TSLA vs Bitcoin. The main difference is that the CVaR considers only low-return risks for a
given probability, whereas the Lorenz and the mean Gini conditions for SSD consider the
risk and mean return for the entire distribution. Using the CVaR is only the first element to
rank downside risk; the next step involves using the Lorenz and the mean Gini conditions
to obtain a complete picture of risk and return and compare Bitcoin to portfolio assets.
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Table 2. CVaR (5%) and CVaR(10%) for all assets.

Symbol CVaR5% CVaR10% Symbol CVaR5% CVaR10% Symbol CVaR5% CVaR10%

BTC 28.73% 14.30% CVX 13.59% 6.76% NFLX 19.31% 9.61%
AAPL 13.31% 6.62% DE 14.18% 7.05% NKE 13.35% 6.65%
ABBV 11.38% 5.66% DHR 11.28% 5.61% NOW 18.39% 9.14%
ABT 11.03% 5.48% DIS 13.54% 6.74% NVDA 21.94% 10.90%
ACN 11.42% 5.68% DUK 9.38% 4.67% ORCL 11.11% 5.53%
ADBE 15.35% 7.64% FDX 15.40% 7.66% PEP 8.05% 4.01%
ADI 14.62% 7.27% GE 18.59% 9.25% PFE 11.06% 5.50%
ADP 11.01% 5.48% GM 18.03% 8.97% PG 8.42% 4.19%
AIG 15.98% 7.95% GOOGL 13.29% 6.62% PLD 12.07% 6.01%
AMAT 20.07% 9.98% GS 13.61% 6.77% PM 11.11% 5.53%
AMD 23.32% 11.61% HD 11.35% 5.65% PNC 14.33% 7.13%
AMGN 10.55% 5.25% HON 10.91% 5.43% PYPL 18.56% 9.23%
AMT 12.00% 5.97% IBM 10.95% 5.45% QCOM 16.93% 8.42%
AMZN 15.26% 7.60% INTC 16.17% 8.05% RTX 12.55% 6.25%
AVGO 14.90% 7.41% INTU 15.39% 7.66% SBUX 11.85% 5.90%
AXP 14.20% 7.06% ISRG 14.84% 7.38% SCHW 16.41% 8.16%
BA 19.70% 9.81% JNJ 8.35% 4.16% SPGI 11.74% 5.84%
BAC 14.50% 7.21% JPM 12.74% 6.34% SYK 12.17% 6.05%
BDX 10.64% 5.29% KHC 12.16% 6.05% T 10.82% 5.38%
BKNG 15.29% 7.61% KO 8.36% 4.16% TFC 16.06% 7.99%
BLK 13.25% 6.60% LIN 11.26% 5.60% TGT 12.89% 6.41%
BMY 10.18% 5.06% LLY 10.97% 5.46% TMO 11.99% 5.95%
BRK-B 9.21% 4.58% LMT 10.31% 5.13% TMUS 11.44% 5.69%
C 15.60% 7.76% LOW 13.01% 6.47% TSLA 26.35% 13.11%
CAT 14.41% 7.17% MA 13.07% 6.50% TXN 13.93% 6.93%
CB 11.32% 5.63% MCD 8.59% 4.27% UNH 11.36% 5.65%
CCI 11.98% 5.96% MDLZ 8.46% 4.21% UNP 11.89% 5.91%
CI 13.98% 6.95% MDT 10.97% 5.46% UPS 12.13% 6.03%
CL 8.92% 4.43% META 17.34% 8.63% USB 14.14% 7.04%
CMCSA 12.41% 6.18% MMC 9.21% 4.58% V 11.56% 5.75%
CME 11.00% 5.47% MMM 12.08% 6.02% VZ 8.74% 4.35%
COP 17.96% 8.93% MO 11.33% 5.64% WFC 15.63% 7.78%
COST 9.50% 4.72% MRK 9.28% 4.62% WMT 8.89% 4.42%
CRM 16.04% 7.98% MS 14.37% 7.15% XOM 14.41% 7.16%
CSCO 11.70% 5.82% MSFT 12.41% 6.18% ZTS 11.46% 5.70%
CSX 12.18% 6.06% MU 21.43% 10.66%
CVS 12.40% 6.17% NEE 10.52% 5.23%

The CVaR values are computed using −L(α)/α for αat 5% and 10%. Assets are ranked alphabeticaly by their symbols.

4. The Shapley Value of Bitcoin in a Efficient Portfolio
In order to compute the exact value of Bitcoin in a standard investment model, I am

using the Shapley value from cooperative game theory. I consider a portfolio of stocks as
an n-person cooperative game where the financial assets are players in the game. The goal
is to measure the contribution of each stock to the general outcome of the portfolio. The
Shapley value extracts the true and exact contribution of each stock to the portfolio’s total
value. The presentation of this section follows Shalit (2021).

The game purpose is to minimize portfolio risk expressed by the variance for a
given mean return. For a set N of n securities, the Shapley value is calculated from the
contribution of each and every security in the portfolio. To capture the way each security
contributes to the entire portfolio, we compute the risk v for each and every subset of stocks
S ⊂ N. In total, we have 2N portfolios or coalitions, including the empty set. The marginal
contribution of each security k to the subset portfolio S is given by v(S) − v(S \ { k }),
where v(S) is the risk of portfolio S, and v(S \ {k}) is the risk of the portfolio S without
security k. Portfolios are predefined, and all the orderings are equally probable. Hence,
S \ {k} is the portfolio that precedes k, and its contribution to coalition S is computed when
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all the orderings of S are accounted for. Given equally probable orderings, we compute
their expected marginal contribution. Therefore, we need the probability that, for a given
ordering, the subset S ⊂ N , k ⊂ S is seen as the union of security k and all the securities
that precede it. Two probabilities are used here: First, the probability that k is in s (s being
the number of stocks in S) being equal to 1/n, and second, that S \ {k} arises when s − 1
securities are randomly chosen from N \ {k}, that is, (n − s)!(s − 1)!/(n − 1)!.

The Shapley value for security k is obtained by averaging the marginal contributions
to the risk of all portfolios for the set of N securities and the risk function v, which in
mathematical terms is written as

Shk(N, v) = ∑
S⊂N,k⊂S

(n − s)!(s − 1)!
n!

[v(S)− v(S \ {k})] (12)

or, alternatively,

Shk(N, v) = ∑
S⊂N,k⊂S

s!(n − s − 1)!
n!

[v(S ∪ {k})− v(S)] . (13)

Shapley value theory works best with a single attribute imputed to all game partici-
pants; thus, I used optimal portfolios whose expected returns are always at their minimum
risk. Consider the set of frontier portfolios generated by minimizing the portfolio variance
for a given expected return. The portfolio frontier in the mean–standard deviation space
was elaborated in Section 2 above. The result is the variance formulated by Equation (2) that
is the set of the optimal MV portfolios. That variance is used to calculate the Shapley value
of assets on the MV efficient frontier. For the mean return µp, the variance of Equation (2)
can be written equivalently as

σ2
p =

1
D
(Cµ2

p − 2Aµp + B). (14)

Then, for an arbitrary set of required mean returns µp, we calculate with Equation (14)
the frontier portfolio variance for each subset S ∪ i ⊆ N. The Shapley value is computed
following Equation (13) using the variance-covariance matrix ΣS and the quadratic forms
AS = l′SΣ−1

S µS, BS = µ′
SΣ−1

S µS, CS = l′SΣ−1
S lS, and DS = BSCS − A2

S for all the 2N subsets
S ⊆ N. The Shapley value for each stock i in an optimal frontier portfolio subject to a given
mean µp is obtained as

Shi(σ
2
p ; µp) =

N−1

∑
s=0

∑
S⊂N\i

(n − s − 1)!s!
n!

[σ2
p(µp, S ∪ {i})− σ2

p(µp, S)] ∀i ∈ N. (15)

Finally, for a given return µp, the Shapley values add up to their optimal portfolio variance
at µp as

N

∑
i=1

Shi(σ
2
p ; µp) = σ2

p(µp) . (16)

It now seems natural to discuss the Shapley value as expressed by Equation (15) for an
asset in an optimal portfolio. Given that efficient portfolios have the lowest variance for
a given mean, the incremental risks σ2

p(µp, S ∪ {i})− σ2
p(µp, S) are non-positive for any

asset i and any set S that does not contain i. Indeed, as assets are added to the portfolio,
the variance does not increase. However, Shapley value computation also includes the
incremental risk of going from an empty portfolio to a portfolio of one risky asset i whose
increment is usually positive. Hence, as it is shown in the empirical analysis, Shapley
values of assets in optimal portfolios can be either negative or positive. Negative Shapley
values imply that these assets reduce their risk contribution to the portfolio as the mean



J. Risk Financial Manag. 2025, 18, 125 11 of 14

return increases. Positive Shapley values imply increasing risk assets along the efficient
frontier and therefore increase mean return.

For the empirical analysis, I have reduced the number of assets because of the dimen-
sionality of calculating the Shapley value. I am confident that in the short future, quantum
computing will solve the dimensionality issue and calculate Shapley value for any portfolio
size. Many other techniques are available to calculate the exact contribution of individual
stocks to their portfolio, but the many attempts made with the Shapley values are the
most practical given the present tools. In the present research, I have chosen 12 assets that
include Bitcoin, the major stock market indices, and single stocks to have a complete picture
of the stock market to compare with Bitcoin. The statistics for these assets are reported in
Appendix A.

The Shapley value results are presented below on Table 3 and plotted in Figure 4 in the
mean return–Shapley value graph. In a sense, we compare the asset mean return against
the risk expressed by their optimal contribution to the portfolio. What we confirmed by
using the Shapley value in an efficient portfolio of major financial assets and BTC is that
Bitcoin is not the most valued financial instrument in terms of risk and mean return.

Figure 4. Shapley values vs means of frontier portfolio assets for 2018–2013 daily returns.
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Table 3. Shapley values of assets on the efficient frontier.

Symbol Mean Shapley Value

AAPL 0.132% 0.113%
BTC 0.149% 0.363%
EEM 0.006% 0.007%
GLD 0.032% −0.259%
IXIC 0.060% 0.034%
IYE 0.046% 0.126%
JNK 0.010% −0.479%

NVDA 0.210% 0.231%
QQQ 0.076% 0.040%
SPY 0.050% −0.053%

TSLA 0.255% 0.326%
XLK 0.090% 0.053%

5. Conclusions and Implications
Daily financial market data from the period 2018–2023 were used in three different

standard rational models to confirm statistically that Bitcoin is an overpriced asset that does
not deserve to be included in a financial portfolio. Mean-variance analysis, second-degree
stochastic dominance, and Shapley values affirm this result to a certain extent. This is true
for all risk-averse investors. Furthermore, because Bitcoin is an unregulated asset traded
on days and hours when investors are enjoying their weekends, its movements cannot be
used efficiently with other financial assets. For institutions and individuals who construct
portfolios using stock market assets for pensions and retirement accounts, including Bitcoin
would be tantamount of using other risky instruments such as casinos, sport betting, and
state lotteries in the portfolio. To include Bitcoin in financial portfolios and avoid weekend
trading, one would need to use its many derivative instruments that can protect its volatility
and include the few Bitcoin ETFs that are traded like regular shares.

Funding: This research received no external funding.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: The original data presented in the study are openly available in
Yahoo Finance.

Conflicts of Interest: The author declares no conflicts of interest

Appendix A

Table A1. Share Statistics Daily Returns 2018–2023.

Symbol Mean Stdev Symbol Mean Stdev Symbol Mean Stdev

AAPL 0.132% 2.064% CVX 0.058% 2.200% NEE 0.070% 1.693%
ABBV 0.060% 1.775% DE 0.092% 2.139% NFLX 0.100% 2.971%

ABT 0.065% 1.667% DHR 0.084% 1.709% NKE 0.065% 2.067%
ACN 0.074% 1.783% DIS 0.011% 2.048% NOW 0.143% 2.731%

ADBE 0.095% 2.351% DUK 0.033% 1.491% NVDA 0.210% 3.320%
ADI 0.083% 2.183% FDX 0.025% 2.340% ORCL 0.083% 1.849%

ADP 0.068% 1.748% GE 0.040% 2.682% PEP 0.052% 1.364%
AIG 0.037% 2.508% GM 0.029% 2.620% PFE 0.036% 1.630%

AMAT 0.118% 2.894% GOOGL 0.083% 1.994% PG 0.054% 1.351%
AMD 0.242% 3.562% GS 0.047% 2.050% PLD 0.076% 1.872%
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Table A1. Cont.

Symbol Mean Stdev Symbol Mean Stdev Symbol Mean Stdev

AMGN 0.042% 1.602% HD 0.059% 1.793% PM 0.026% 1.700%
AMT 0.046% 1.797% HON 0.045% 1.686% PNC 0.025% 2.165%

AMZN 0.081% 2.260% IBM 0.026% 1.692% PYPL 0.027% 2.702%
AVGO 0.126% 2.326% INTC 0.012% 2.396% QCOM 0.088% 2.584%

AXP 0.071% 2.339% INTU 0.103% 2.311% RTX 0.043% 2.026%
BA 0.028% 3.116% ISRG 0.095% 2.272% SBUX 0.067% 1.918%

BAC 0.031% 2.207% JNJ 0.028% 1.294% SCHW 0.038% 2.393%
BDX 0.031% 1.550% JPM 0.052% 1.995% SPGI 0.079% 1.859%

BKNG 0.056% 2.286% KHC −0.014% 1.970% SYK 0.066% 1.923%
BLK 0.051% 2.010% KO 0.042% 1.325% T −0.003% 1.624%

BMY 0.029% 1.502% LIN 0.083% 1.700% TFC 0.014% 2.461%
BRK-B 0.048% 1.432% LLY 0.146% 1.860% TGT 0.085% 2.152%

C 0.007% 2.402% LMT 0.050% 1.659% TMO 0.090% 1.767%
CAT 0.058% 2.087% LOW 0.090% 2.109% TMUS 0.069% 1.786%

CB 0.044% 1.764% MA 0.089% 2.035% TSLA 0.255% 4.107%
CCI 0.031% 1.760% MCD 0.059% 1.474% TXN 0.069% 2.008%

CI 0.043% 2.122% MDLZ 0.058% 1.367% UNH 0.083% 1.842%
CL 0.019% 1.343% MDT 0.025% 1.645% UNP 0.054% 1.799%

CMCSA 0.024% 1.796% META 0.071% 2.773% UPS 0.056% 1.880%
CME 0.046% 1.763% MMC 0.074% 1.483% USB −0.001% 2.178%
COP 0.097% 2.778% MMM −0.032% 1.719% V 0.070% 1.805%

COST 0.091% 1.518% MO 0.008% 1.642% VZ −0.004% 1.258%
CRM 0.083% 2.440% MRK 0.077% 1.451% WFC 0.011% 2.336%

CSCO 0.048% 1.806% MS 0.070% 2.201% WMT 0.048% 1.444%
CSX 0.064% 1.881% MSFT 0.124% 1.945% XOM 0.060% 2.108%
CVS 0.025% 1.796% MU 0.084% 2.997% ZTS 0.082% 1.755%

Table A2. List of 12 Assets for Shapley Value.

Symbol Mean St-Dev

AAPL 0.132% 2.064%
BTC 0.149% 4.498%
EEM 0.006% 1.437%
GLD 0.032% 0.910%
IXIC 0.060% 1.591%
IYE 0.046% 2.248%
JNK 0.010% 0.636%

NVDA 0.210% 3.320%
QQQ 0.076% 1.624%
SPY 0.050% 1.330%

TSLA 0.255% 4.107%
XLK 0.090% 1.739%

Notes
1 The utility of the mean return is greater than the mean of the utilities of the returns.
2 Since some of the the S&P100 components are added and removed by year’s end in the index, I used 108 shares to have at least

100 stocks in the sample.
3 It was suggested by a referee that one should have used Engle and Rangel (2009) method to synchronize the data.
4 The mean-variance frontier and 108 assets with Bitcoin are plotted in the mean–standard deviation space.
5 The exposition follows the presentation developed by Shalit (2014) and Shalit and Yitzhaki (2010).
6 The absolute Lorenz curve L(P) expresses the cumulative returns as a function of cumulative probabilities, with LSA being the

Lorenz of a risk-free asset with identical mean return.



J. Risk Financial Manag. 2025, 18, 125 14 of 14

References
Akhtaruzzaman, M., Sensoyc, A., & Corbet, S. (2020). The influence of Bitcoin on portfolio diversification and design. Finance Research

Letters, 37, 101344. [CrossRef]
Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9, 203–228. [CrossRef]
Bakry, W., Rashid, A., Al-Mohamad, S., & El-Kanj, N. (2021). Bitcoin and porfolio diversification: A portfolio optimization approach.

Journal of Risk and Financial Management, 14, 282. [CrossRef]
Eisl, A., Gasser, S. M., & Weinmayer, K. (2015). Caveat emptor: Does bitcoin improve portfolio diversification? SSRN, 2408997.

[CrossRef]
Engle, R., & Rangel, J. (2009). The Factor-Spline-GARCH model for high and low frequency correlations. Working Papers, No. 2009-03. Banco

de México, Ciudad de México.
Foley, S., Karlsen, J. R., & Putnins, T. J. (2019). Sex, drugs, and bitcoin: How much illegal activity is financed through cryptocurrencies?

The Review of Financial Studies, 32(5), 1798–1853. [CrossRef]
Gastwirth, J. L. (1971). A general definition of the lorenz curve. Econometrica, 39, 1037–1039. [CrossRef]
Hadar, J., & Russell, W. R. (1969). Rules for ordering uncertain prospects? American Economic Review, 59, 25–34.
Hanoch, G., & Levy, H. (1969). The efficiency analysis of choice involving risk. Review of Economic Studies, 36, 335–346. [CrossRef]
Huang, C,-F., & Litzenberger, R. H. (1988). Foundations for financial economics. Elsevier Science Publishing Co.
Huberman, G., Leshno, J. D., & Moallemi, C. (2021). Monopoly without a monopolist: An economic analysis of the Bitcoin payment

system. Review of Economic Studies, 88(6), 3011–3040. [CrossRef]
Krugman, P. (2022, November 18). Is this the end game for crypto? New York Times.
Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.
Platanakis, E., & Urquhart, A. (2020). Should investors include bitcoin in their portfolios? A portfolio theory approach. The British

Accounting Review, 52(4), 100837. [CrossRef]
Rockafellar, R., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2, 21–41. [CrossRef]
Rothschild, M., & Stiglitz, J. (1970). Increasing risk i: A definition. Journal of Economic Theory, 2, 66–84. [CrossRef]
Shalit, H. (2014). Portfolio risk management using the Lorenz curve. Journal of Portfolio Management, 40(3), 152–159.
Shalit, H. (2021). The Shapley value decomposition of optimal portfolios. Annals of Finance, 17(1), 1. [CrossRef]
Shalit, H., & Yitzhaki, S. (2010). How does beta explain stochastic dominance efficiency? Review of Quantitative Finance and Accounting,

35(4), 431–444. [CrossRef]
Shorrocks, A. F. (1983). Ranking income distributions. Economica, 50, 3–17. [CrossRef]
Yitzhaki, S. (1982). Stochastic dominance, mean variance, and Gini’s mean difference. American Economic Review, 72(1), 178–185.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.frl.2019.101344
http://dx.doi.org/10.1111/1467-9965.00068
http://dx.doi.org/10.3390/jrfm14070282
http://dx.doi.org/10.2139/ssrn.2408997
http://dx.doi.org/10.1093/rfs/hhz015
http://dx.doi.org/10.2307/1909675
http://dx.doi.org/10.2307/2296431
http://dx.doi.org/10.1093/restud/rdab014
http://dx.doi.org/10.1016/j.bar.2019.100837
http://dx.doi.org/10.21314/JOR.2000.038
http://dx.doi.org/10.1016/0022-0531(70)90038-4
http://dx.doi.org/10.1007/s10436-020-00380-2
http://dx.doi.org/10.1007/s11156-010-0167-2
http://dx.doi.org/10.2307/2554117

	Introduction
	Bitcoin and Portfolio Management
	Bitcoin, the Lorenz, and CVaR
	The Shapley Value of Bitcoin in a Efficient Portfolio
	Conclusions and Implications
	Appendix A
	References

